
OXFORD COMMON FILESYSTEM LAYOUT

1

OXFORD COMMON FILESYSTEM LAYOUT

Version 0.1 Alpha
Storing and describing files are central to the functionality of institutional
repositories. Unlike catalogues, where an electronic record exists to point to a
physical object, an institutional repository itself contains and manages the
electronic objects as well as the cataloguing data.

There are currently no agreed upon practices, however, for the low-level filesystem
structures that institutional repository systems adopt to store these objects on
disk. Some systems delegate this responsibility to third-party libraries, treating the
storage layer as a 'black box' [e.g., Modeshape]. Others implement their own
software-specific filesystem hierarchy.[EPrints, Dspace?] Yet others take no
particular view on this, leaving the filesystem hierarchy up to the individual
institutions to implement according to local practices.

In each of these implementations, there is no common approach to storing both file
data and metadata on the disk. This can have significant implications on the long-
term viability of the data, especially in systems that are built as "fire and forget" --
that is, static collections that 'just work' until they do not.

This document will propose a common approach to filesystem layout for
institutional repositories, providing recommendations for how IR systems should
structure and store files on disk. It is developed under the name "Oxford Common
Filesystem Layout" (OCFL) because the impetus for this effort grew out of
discussions held at the Fedora / Samvera Camp held at the University of Oxford,
September 2017. It generally follows the model of naming an effort after the place
where it originated (see: Dublin Core, Portland Common Data Model).

The goals for this effort include:

1. Better support of decoupled microservices. A common filesystem layout will
provide an expected platform on which many services can act on the IR
filesystem, independent of any single 'managerial' system. Services involved in
delivery (e.g., a IIIF-compatible image server) can use the underlying filesystem
directly, without needing to go through an intermediate retrieval system.
Preservation and auditing systems can operate on the underlying data directly.

2. Data migration and "rebuildability." A common approach to filesystems, and
a mandate to provide the ability to 'rebuild' an institutional repository from the

2

filesystem, can help obviate challenges in migrating from one system to
another. (It could be argued that a large part of the time, and effort, involved in
migrating systems is designing and building the process of translating from one
filesystem structure to another.) Put another way, there should be no absolute
requirement on a particular piece of software to use or make sense of the
objects on the filesystem. A user (or software implementer) should be able to
understand the repository with just the files (and possibly the OCFL spec for
convenience.)

3. Common object versioning model. Digital object versioning has been
implemented in several different ways, each with different impacts on storage
capacity and performance. A common approach to this will provide an expected
filesystem layout that follows best practices, but perhaps even more
importantly it can document the decision process and discussions around these
tradeoffs.

4. Storage systems best-practices and recommendations. Discussion around
filesystem layout should not dig too deeply into specific implementations;
however, there is a need for high-level discussions at the intersection of
implementation and layout. For example, if object versioning relies on symbolic
links, how does this translate to cloud-based systems like Amazon S3? What are
the recommendations for storage systems that can span multiple devices or
protocols? Are there any filesystem design practices that can have a negative
impact when implemented "at scale"?

5. Backup. By storing the institutional repository data as 'plain' filesystem
objects, and making a requirement on 'rebuildability' from the filesystem, the
system presents a single interface to repository duplication. Backing up the
entire repository is simply backing up the filesystem, without the need to rely on
external processes for database exports. (Of course, database exports can still
form part of a backup strategy, but an "apocalyptic scenario" disaster recovery
strategy does not rely on having these files).

6. Validation. Part of the efforts around OCFL should be the creation of a
filesystem layout validation tool which can flag both errors and warnings against
a given filesystem and its conformance to the OCFL specification.

Some preliminary challenges and considerations might include:

1. The 'rug' problem. If many systems are expected to operate on a unified set of
files, how do we prevent any one system from "having the rug pulled out from
under it" -- that is, operations that take place that change the underlying data in
ways that it was not expecting.

2. The 'common data model' problem. Institutions implement metadata in many
different ways that are not immediately amenable to a standardised storage

3

approach. At a minimum, what is required to create a standardised filesystem
layout while recognising that the exact contents of the objects being stored can
vary in structure.

3. The border between layout and specific technologies. While many systems
implement filesystem layout in the standard 'file-and-folder' paradigm, others
might use specific technologies, like Apache Cassandra or HDFS, that require
different approaches in their implementation.

4. The 'here or there' problem. Some systems use both local and remote storage
to store the underlying data. For example, small files might be stored locally,
while large files might be stored in a cheaper cloud storage location and simply
'pointed' to locally. How do we resolve the problem of having files that are there,
but not?

5. The consistency problem. Depending on the nature of the files, the systems
being used to provide them, and the location to which they are being written, it
may not be possible to provide a synchronous guarantee that data that is
provided has been written. Should a guarantee of 'eventual consistency' be
enough, or should there be an absolute requirement on atomic and synchronous
write operations within the IR?

Previous art

The Unix Filesystem Hierarchy Standard describes a common filesystem hierarchy
expected of compatible systems. It allows both users and software to try and
predict likely locations of operating system components, such as '/lib' for libraries,
'/include' for headers, or '/etc' for configuration files. The OCFL aims to describe a
filesystem hierarchy for the same reasons: To promote a common approach for
both user and systems to understand and work with the file systems underlying
their institutional repositories.

There are a family of specifications oriented around filesystem layout developed as
part of the California Digital Library efforts . This includes PairTree, ReDD (Reverse
Directory Deltas), and D-Flat, and several other associated specifications. These
specifications may be a useful starting point for our discussions.

The MOAB system at Stanford University Libraries builds on the work at California
Digital Libraries for object versioning. They considered implementation details
such as choosing forward or reverse versioning and their relative complexities.

Notes

1

2

3

4

While the OCFL is intended to serve as the underlying storage layout, it makes no
assumptions on the delivery mechanisms that sit above it. Implementers should be
free to implement services that promote faster access to the underlying objects,
such as relational databases, triple-stores, or key-value stores. For write
operations, consistency with the OCFL store can follow the 'eventual consistency'
model, while caching layers might provide a faster synchronous storage layer.

Document versions

0.1 Alpha Initial proposal; Authors: Andrew Hankinson

1. https://wiki.linuxfoundation.org/lsb/fhs
2. https://confluence.ucop.edu/display/Curation/Microservices
3. http://journal.code4lib.org/articles/8482

